
1. SSAP evolution 2012
Markus Demleitner (with input from Petr Skoda)

msdemlei@ari.uni-heidelberg.de

• The mythical getData operation: Cutouts and more

• Fuzzy querying for objects

• Object name discovery

2. getData: Why?

Primary usecase: Cutouts. For spectra, that’s particularly useful since people frequently are
interested in just the vicinity of a spectral line.

Secondary usecase: Generation of spectra in diverse formats. SSAP already has a FORMAT pa-
rameter; if a service supports generating lots of formats (e.g., VOTable, SDM FITS, “FITS
image”), the SSAP response will contain a row each for every format and every object, which
may be clunky depending on the smarts of the client; deferring the FORMAT decision to retrieval
remedies that.

With cutouts, continuum subtraction, rebinning, and similar become difficult in the client. Thus,
it may become necessary to put this on the server side, too.

3. getData: The principle

Idea: Rather than use what’s returned as accref, use the publisher DID on getData.

getData without a PUBDID would return a metadata response.

Possible addition: Allow creator DID as well? This would potentially allow the discovery of a
uniquely identified spectrum; however, since right now it seems nobody actually passes around
creator DIDs, it’s probably not worth the effort.

Unknown PUBDIDs yield a 404.

getData may evaluate further parameters, locally defined ones and parameters like FORMAT

(on-the-fly format conversion), BAND (cutouts), SPECRP (rebinning), and FLUXCALIB (flux nor-
malization).

getData must error out on unknown parameters or malformed parameter values.

4. PQL metacharacters

SSAP vaguely defines metacharacters for parameters: 7e-7/8e-7,1e-10/2e-10;RESTFRAME
might be a valid specification for BAND.

I propose to not recognize any of this and just define a special syntax for BAND: [<low>]/[<high>].

Personal preference: I’d much rather have, say, LAMBDA LOW and LAMBDA HIGH and punt the
parameter syntax entirely, but that’s probably too far from SSAP.

Completely unhandled right now: transformation to rest frame. This may not be so bad for the
primary use case of querying specific lines on specific objects since the object’s redshift would
usually be known to the client (or its user).

1

5. Generation Parameters

To declare support of getData, services include a TABLE named generationParameters in
the SSAP queryData response (a copy of this table is returned when no PUBDID is given in
getData):

<TABLE name="generationParameters">

<PARAM name="FORMAT" datatype="char" arraysize="*"

value="application/x-votable+xml">

<VALUES>

<OPTION>application/x-votable+xml</OPTION>

<OPTION>text/plain</OPTION>

<OPTION>application/fits</OPTION>

</VALUES>

</PARAM>

<PARAM name="BAND" datatype="float" unit="m">

<VALUES>

<MIN>2e-7</MIN>

<MAX>8e-7</MIN>

</VALUES>

</PARAM>

</TABLE>

Basically, there are enumerated parameters (probably all string-valued parameters are enume-
rated), and ranged parameters (probably all floating-point valued parameters). The VALUES
children allow clients to figure out what values might yield a spectrum in from getData re-
quest. The service is still free to return a 400 with a standard SSAP error document if getData
parameters are not palatable or come in an invalid combination.

6. Pattern Queries

For solar system objects, components of multiple star systems, exoplanets, etc., position-based
queries are insufficient. TARGETNAME queries don’t work well since literal matches are too
restrictive given the quality of real metadata.

(Partial) mitigation: New SSAP parameters WILDTARGET and WILDTARGETCASE.

Servers supporting them declare so in their FORMAT=Metadata response.

Proposed pattern language: POSIX shell patterns (with *, ?, [], and backslash as metacharacters).

7. PQL Metacharacters, again

We probably want to allow specification of multiple patterns (“Beteigeuze,alf*ori,alp*ori”). Using
PQL syntax with commas would require more pattern syntax, which I don’t like.

Alternative: Require evaluation of multiple occurrences of WILDTARGET*.

Problem: This is against how SSAP currently works, and there’s been resistance against repeated
parameters.

2



8. Pattern language alternatives

• SQL patterns (% and as metacharacters)

• DOS patterns (* and ? as metacharacters with ad-hoc escaping)

• Some subset of Perl-compatible REs

• “Google-like”

There’s a deliberation of these alternatives in the spec draft.

9. getTargetNames

Astronomical nomenclature is a mess. It would be useful if people could get a quick idea of what
nomenclatures are in use on a given service.

Solution: REQUEST=getTargetNames. This is exactly equivalent to queryData, except only one
row is returned for every distinct object name in the result set, and each row only contains one
column with utype="ssa:Target.Name".

Since MAXREC applies, even huge archives will not be swamped; overflows are signalled as in
SSAP.

10. Implementation status

GAVO DaCHS implements getTargetNames – it’s straightforward if you have an RDBMS behind
your archive (who hasn’t?)

GAVO DaCHS implements WILDTARGET* except for multiple parameter specs – the pattern
translation is rather messy

No implementation exists for getData. If we actually go for stuff like server-side normalization,
this will become ugly, but efforts to that effect are under way in Ondrejov.

Draft spec at http://docs.g-vo.org/ssaevolution.html1.

1 http://docs.g-vo.org/ssaevolution.html

3


